
J. Fluid Mech. (1998), vol. 371, pp. 207–232. Printed in the United Kingdom

c© 1998 Cambridge University Press

207

Direct simulation of transition in an oscillatory
boundary layer

By G. V I T T O R I1 AND R. V E R Z I C C O2
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Numerical simulations of Navier–Stokes equations are performed to study the flow
originated by an oscillating pressure gradient close to a wall characterized by small
imperfections. The scenario of transition from the laminar to the turbulent regime
is investigated and the results are interpreted in the light of existing analytical
theories. The ‘disturbed-laminar’ and the ‘intermittently turbulent’ regimes detected
experimentally are reproduced by the present simulations. Moreover it is found that
imperfections of the wall are of fundamental importance in causing the growth of two-
dimensional disturbances which in turn trigger turbulence in the Stokes boundary
layer. Finally, in the intermittently turbulent regime, a description is given of the
temporal development of turbulence characteristics.

1. Introduction
The boundary layer generated by the harmonic oscillations of a fluid parallel to an

infinite fixed plate (Stokes layer) has received considerable attention. Besides being
the prototype of unsteady boundary layers, the Stokes boundary layer is present in a
variety of applications ranging from offshore and coastal engineering to biomedical
sciences. The flow field in the laminar regime is well known (Stokes 1855). More
recent investigations have addressed the problem of detecting transition to turbulence
and of studying flow characteristics in the turbulent regime.

Turbulence has invariably been observed at Reynolds numbers larger than about
500, the resulting flow being characterized by the sudden, explosive appearance of
turbulence bursts towards the end of the accelerating phases of the cycle (Hino,
Sawamoto & Takasu 1976). Herein, the Reynolds number Rδ is defined using the
amplitude U∗o of the velocity oscillations just outside the boundary layer and its con-
ventional thickness δ∗ equal to (2ν∗/ω∗)1/2, where ω∗ is the angular frequency of fluid
oscillations and ν∗ the kinematic viscosity of the fluid. Experimental investigations
show that turbulence is sustained throughout the decelerating phases, while during
the early stages of the accelerating phases production of turbulence stops, the distur-
bances decay and the flow recovers its laminar behaviour. For increasing values of Rδ
turbulence affects larger parts of the cycle, till for Rδ around 3500 (Jensen, Sumer &
Fredøe 1989) turbulence is present throughout the whole cycle. It is worth pointing
out that some experimental studies (see for example Hino et al. 1976) showed that
for values of Rδ smaller than 500 but larger than a value which is quite sensitive to
the particular experimental set-up and ranges around 100, ‘small-amplitude’ pertur-
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bations appear superimposed on the Stokes flow, even though the average velocity
profiles exhibit only small deviations from the laminar case.

Therefore, on the basis of existing experimental observations, it can be concluded
that four flow regimes can be identified: I the laminar regime; II a disturbed laminar
regime, where ‘small-amplitude’ perturbations appear superimposed on the Stokes
flow; III an intermittently turbulent flow, where bursts of turbulence appear explo-
sively only during the decelerating phases of the cycle; IV a fully developed turbulent
regime characterized by turbulence presence throughout the whole cycle.

Only recently have these experimental findings found an appropriate theoretical
interpretation. It is generally agreed that transition is due to the local instability of
the Stokes boundary layer and, therefore, much of the existing theoretical works have
addressed the study of the time development of flow perturbations scaling with δ∗.
A first group of linear stability analyses proposed in the literature (Von Kerczeck &
Davis 1974; Hall 1978) provided a description of the behaviour of disturbances aver-
aged over a cycle, even though the time-periodic nature of the basic flow was explicitly
considered. The analyses by Von Kerczek & Davis (1974) for the finite Stokes layer
and by Hall (1978) for the infinite Stokes layer predicted the flow to be stable within
the investigated range of the Reynolds number. A second group of stability analyses,
based on a momentary criterion for instability (Von Kerczeck & Davis 1974; Tromans
1976; Blondeaux & Seminara 1979; Monkewitz 1983; Cowley 1987) were equally un-
successful in explaining experimental findings. Indeed such analyses found that for Rδ
larger than 86 there are parts of the cycle near flow reversal during which the flow is
unstable to initial perturbations of infinitesimal amplitude. However, even though the
perturbations are characterized by a transient growth, they are found to experience a
net decay over a cycle. Transition to turbulence has been recently shown to be related
both to a receptivity mechanism and to nonlinear three-dimensional effects by the
works by Blondeaux & Vittori (1994) and Wu (1992) respectively. Blondeaux & Vit-
tori (1994) with a two-dimensional analysis showed that an aperiodic flow with many
characteristics in common with the bursting turbulent flow detected experimentally
can be generated by the interaction among the momentarily unstable modes studied
by Blondeaux & Seminara (1979) and the forced modes induced by infinitesimal wall
imperfections. Another possible mechanism for the generation of a bursting flow in
a flat Stokes layer was pointed out by Wu (1992) who considered the nonlinear evo-
lution of a high-frequency inviscid disturbance composed of a two-dimensional wave
and a pair of oblique waves. He showed that the amplitudes of the three waves can
develop a finite-time singularity, the explosive growth being induced by the nonlinear
interaction inside critical layers. Later Wu, Lee & Cowley (1995) also considered
viscous effects which, for large values of the Reynolds number, were found to become
important first in the critical layers far from the wall and then in the wall layer.

On the numerical side, by means of direct simulations of Navier–Stokes equations,
Spalart & Baldwin (1987) and Akhavan, Kamm & Shapiro (1991 b) found, in ac-
cordance with linear stability theories, that initial disturbances of small amplitude
always experience a net decay. On the other hand they found in accordance with
Wu (1992)’s analysis that two-dimensional disturbances of large amplitude when in-
teracting with three-dimensional perturbations can trigger transition to turbulence.
However neither Spalart & Baldwin (1987) nor Akhavan et al. (1991 b) explained how
a large-amplitude two-dimensional wave can be generated within the boundary layer
in the first place. More recently, a preliminary numerical investigation by Verzicco &
Vittori (1996) has shown that wall imperfections are of fundamental importance in
triggering transition to turbulence in the Stokes layer.
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In the present contribution the flow induced by an oscillatory pressure gradient
close to a flat wall but characterized by small imperfections is studied by means of a
three-dimensional numerical simulation of Navier–Stokes and continuity equations.
By starting from the achievements of Verzicco & Vittori (1996), the mechanism of tran-
sition from the laminar regime to the ‘disturbed laminar’ one and from the latter to the
intermittently turbulent regime is investigated. Moreover, the characteristics of the flow
field in the different regimes are presented. The work of Blondeaux & Vittori (1994)
is extended by taking into account three-dimensional effects which, as Akhavan et al.
(1991 b) Wu (1992) and Wu et al. (1993) showed, play an important role in secondary
instability. Moreover, nonlinear effects in the evolution of flow disturbances, neglected
by Akhavan et al. (1991 b), are included and are shown to influence the characteristics
of the flow field even for values of Reynolds number close to the critical conditions.

From a mathematical point of view it cannot be stated that the wall imperfections
we consider are of infinitesimal amplitude since our analysis is not based on a
perturbation approach but on the numerical simulation of the full Navier–Stokes
equations. However, the results described in § 3 and obtained for amplitudes ε∗ of the
wall waviness which are quite small compared with δ∗ (values of ε∗/δ∗ of order 10−3,
10−4 and 10−5 are considered) show that transition to turbulence can be triggered
without resorting to the introduction of initial perturbations of the flow field which
are of significant amplitude when compared with the basic Stokes flow.

The structure of the rest of the paper is the following. In the next section we
formulate the problem and describe briefly the numerical method. The third section is
devoted to detecting transition from the laminar to the turbulent regime. In the fourth
section, the structure of the flow field in the disturbed laminar and intermittently
turbulent regimes is investigated. The last section is devoted to the conclusions.

2. The problem
In the present work we study the boundary layer generated, close to a wall, by an

oscillating pressure gradient described by

∂P ∗

∂x∗1
= −ρ∗U∗oω∗ sin(ω∗t∗),

∂P ∗

∂x∗2
= 0,

∂P ∗

∂x∗3
= 0, (1)

where x∗1, x
∗
2 and x∗3 indicate streamwise, cross-stream and spanwise coordinates re-

spectively (see figure 1). The wall is not perfectly flat but characterized by a small
waviness and its profile η∗ is given by the superimposition of sinusoidal components

x∗2 = ε∗η(x∗1, x
∗
3) = ε∗

N∑
n=1

an cos(α∗nx
∗
1 + γ∗nx

∗
3 + φn), (2)

where ε∗an denotes the amplitude of the nth component which is characterized by
wavenumbers α∗n and γ∗n in the x∗1- and x∗3-directions respectively and by a random
phase φn. In (1) ρ∗ is the constant density of the fluid, U∗o and ω∗ are the amplitude
and the angular frequency of fluid velocity oscillations induced by (1) far from the
wall. A star is used to denote dimensional quantities and use is made of dimensionless
variables defined as

t = t∗ω∗, x = (x1, x2, x3) =
(x∗1, x

∗
2, x
∗
3)

δ∗
,

u = (u1, u2, u3) =
(u∗1, u

∗
2, u
∗
3)

U∗o
, p =

p∗

ρ∗(U∗o )
2
.

 (3)
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Figure 1. Sketch of the problem.

In (3) t∗ is time, u∗1, u
∗
2, u
∗
3 the fluid velocity components along x∗1, x

∗
2 and x∗3 respectively

and δ∗ is the conventional thickness of the viscous boundary layer close to the wall
defined as (2ν∗/ω∗)1/2, ν∗ being the kinematic viscosity of the fluid.

The problem is thus posed by Navier–Stokes and continuity equations:

∂u

∂t
+
Rδ

2
∇ · (uu) = −Rδ

2
∇p+ ix1

sin(t) + 1
2
∇2u (4a)

∇ · u = 0 (4b)

where ix1
is the unit vector in the streamwise direction. The governing equations are

solved numerically in a computational domain of dimensions Lx1
, Lx2

and Lx3
in the

streamwise, cross-stream and spanwise directions respectively.
At the lower wall the no-slip condition is enforced:

(u1, u2, u3) = 0 at x2 = εη(x1, x3). (5)

Having assumed the amplitude of the wall waviness to be much smaller than the
thickness of the laminar boundary layer (ε = ε∗/δ∗ � 1), boundary condition (5) can
be approximated as

(u1, u2, u3) = −εη(x1, x3)
∂

∂x2

(u1, u2, u3) + O(ε2) at x2 = 0. (6)

Note that (6) is an approximation of the boundary condition (5) within the accuracy
of the numerical method itself. Indeed the numerical scheme adopted is second order
accurate in space and in all the simulations ε has been taken to be smaller than the
first computational step in the x2-direction.

At x2 = Lx2
a symmetry condition is imposed:

∂

∂x2

(u1, u3) = 0, u2 = 0, (7)
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which is equivalent to requiring the vanishing of tangential stresses far from the wall
and to imposing that the flow field far from the wall tends to (−U∗o cosω∗t, 0, 0).

Finally, the turbulent flow is assumed to be homogeneous in the streamwise and
spanwise directions and periodic boundary conditions are thus enforced along the x1-
and x3-axes. The use of periodic boundary conditions in the homogeneous directions
is justified if the computational box (period) is large enough to include the largest
eddies in the flow. Checks on the size of the computational box, reported in the
following, have been carried out to verify this assumption.

The computational mesh is uniform in the streamwise and spanwise directions while
in the cross-stream one a non-uniform mesh has been used to cluster the gridpoints
in the vicinity of the wall where gradients are expected to be stronger. The clustering
function is

x2 = Lx2

(
1 +

tanh[a(ξ − 1)]

tanh(a)

)
, (8)

where 0 6 ξ 6 1 is the computational domain where equispaced grid points are
introduced and a is an appropriate stretching parameter.

The numerical method solves the problem in primitive variables using standard
centred second-order finite difference approximations of the spatial derivatives, while
the time-advancement of Navier–Stokes equations employs a fractional-step method
extensively described by Kim & Moin (1985), Orlandi (1989) and Rai & Moin (1991).
The non-solenoidal intermediate velocity field is evaluated by means of a third-order
Runge–Kutta scheme to discretize convective terms together with a Crank–Nicolson
scheme the diffusive terms. The implicit treatment of the viscous terms would require
for the inversion of large sparse matrices which are reduced to three tridiagonal
matrices by a factorization procedure with an error of order (∆t)3 (Beam & Warming
1976). Then, by forcing the continuity equation (4b) a Poisson equation for the
pressure field is obtained which is readily solved by taking advantage of the imposed
periodicity in the x1- and x3-directions. More details on the numerical approach can
be found in Kim & Moin (1985) and Rai & Moin (1991).

In order to check the numerical code, preliminary computations have been per-
formed to compare the results with previous analytical solutions which hold for
small or moderate values of the Reynolds number Rδ (Blondeaux 1990; Vittori 1992).
Figure 2 shows an example of the comparison between the numerical solution and
the analytical one obtained by Blondeaux (1990) assuming small values of ε and by
considering a two-dimensional wall wavyness. It appears that the numerical solution
is practically indistinguishable from the theoretical one. A good agreement has also
been found when comparing the outputs of the numerical code with the results de-
scribed in Vittori (1992) which hold for moderate values of Rδ , small values of ε and a
three-dimensional wall wavyness. Then the numerical code has been run for different
values of the Reynolds number Rδ ranging from 50 to 1200. Some parameters of
the wall profile (2) have been kept fixed in all the runs. In particular a wall profile
with two harmonic components (N = 2) has been used. The first component is two-
dimensional and has wavenumber characteristic of the most unstable two-dimensional
disturbance detected by Blondeaux & Seminara (1979), i.e. α1 = 0.5 and γ1 = 0. The
second component has been chosen with the same spanwise spatial periodicity as that
of the three-dimensional perturbations which Akhavan et al. (1991 b) showed to have
the maximum growth rate when interacting with a pre-existing finite amplitude two-
dimensional wave (γ2 = 1, α2 = 0). Moreover, a1 = 1, a2 = 0.1 and φ1 = φ2 = 0. If not
otherwise specified ε has been set equal to 0.005 which is a value typical of the order
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Figure 2. Contour plot of the vertical velocity component for Rδ = 50, ε = 0.005, N = 1, a1 = 1,
α1 = 0.5, γ1 = 0: (a, c, e) numerical results, (b, d, f) analytical solution: (a, b) t = 0, (c, d) t = π/4,
(e, f) t = π/2 (∆v2 = ±1.1× 10−4) ——, positive; - - - - -, negative values.

of magnitude of imperfections for a mirror-shine smooth wall. However, in order to
investigate the effect of the amplitude of the wall wavyness in the transition process,
other values of ε have been considered and in particular ε = 0.0005 and ε = 0.000 05.
The size of the computational domain has been fixed for all the runs as 25.13δ∗,
12.57δ∗ and 25.13δ∗ in the x∗1, x

∗
3 and x∗2 directions respectively and the number of

grid points in these directions is 65, 33 and 65 respectively. The stretching parameter
a in equation (8) has been set equal to 1.8 so that 11 grid points were clustered in
the direction normal to the wall in the first unit length. From the results shown in
the following (see for example figures 5, 8, 9 and 10) it can be appreciated that the
value chosen for a is appropriate for describing the vortex structures appearing in the
nearwall region for the range of Reynolds numbers investigated here.

Checks have been performed on the numerical grid and on the box dimensions.
First, the run for Rδ = 800, during which turbulence is observed, has been repeated
with the same box dimensions but with a larger number of grid points (97, 97 and 49
in the streamwise, cross-stream and spanwise directions respectively). All the averaged
quantities describing turbulence have shown no significant change. For example the
time average of the vertically integrated kinetic energy of turbulence defined in the
following (equation (13)) takes the value 1.15 × 10−2 for the reference simulation
(average over 13 periods) and the value 1.13 × 10−2 (average over four periods) for
the finer grid simulation and the difference is thus less than 2 %. Then the simulation
has been repeated for a larger box. In particular the box dimensions in the x1- and
x3-directions have been doubled together with the number of grid points. In this case
too, no significant change in turbulence characteristics has been detected even though
the differences with respect to the reference simulation increase. For example the
vertically integrated kinetic energy of turbulence turns out to be 1.24× 10−2 (average
over four periods).

To shorten the length of the transient, the runs have been started from the flow
fields determined analytically in Vittori (1992) which differ from the Stokes solution
for quantities of order ε. However, the flow field regime does not depend on the initial
conditions. The attainment of regime conditions was judged on the basis of the tem-
poral development of the velocity components at a fixed position and of the vertically
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Transient time discarded
Length of the in the treatment of

Run number Rδ simulation the results

1 100 6π 2π
2 200 6π 2π
3 400 10π 4π
4 500 10π 4π
5 550 26π 20π
6 600 32π 20π
7 800 30π 4π
8 1000 16π 4π
9 1200 16π 4π

Table 1.

integrated specific turbulent kinetic energy. Even though in most cases convergence
was obtained at the end of the first cycle, the first two cycles were discarded. However,
in the vicinity of transitional Reynolds numbers, the attainment of a statistical steady
state was somewhat slower and as many as 10 cycles were required to reach regime
conditions. In such cases a longer transient was discarded. In table 1 the length of
the numerical simulation is reported for each run together with the number of initial
periods discarded to determine averaged quantities characterizing turbulence.

3. Transition to turbulence
The flow fields obtained by means of the present numerical code show the same

features as observed in previous experimental studies (Hino et al. 1976; Jensen et al.
1989; Akhavan, Kamm & Shapiro 1991 a; Eckmann & Grotberg 1991). In particular
for Reynolds numbers up to 100, the flow is the same as that obtained analytically
by Vittori (1992) and differs from the Stokes solution only for quantities of order
ε, induced by the presence of the waviness of the wall. Therefore, this flow regime
can be defined as laminar. For values of the Reynolds number in the range 100–
550 significant two-dimensional disturbances are observed, the amplitude of which,
starting from small values, grows during parts of the cycle and reaches values much
larger than ε, and then decreases in the remaining parts and becomes small again.
From figure 3(b), where the time development of the cross-stream component of
velocity at a fixed position is shown for Rδ = 500, it can be immediately observed
that disturbances of the flow start to grow at the end of the decelerating part of
the cycle, reach their maximum intensity at the beginning of the accelerating part
and then slowly decay (notice that the external flow progresses as −U∗o cosω∗t∗).
However, note that in this flow regime the disturbances are periodic (see figure 3 b)
and two-dimensional (see figure 3 c). Hence the flow is deterministic and the regime
cannot be called turbulent but, according to the existing literature, the term ‘disturbed
laminar’ will be used. Characteristics of the disturbed-laminar regime can be detected
by considering the Fourier components in the x1- and x3-directions of the vertically
integrated kinetic energy (E) of the perturbations, which are computed after having
decomposed the flow field into an averaged and in a fluctuating part. Because of the
supposed quasi-homogeneity of the flow in the streamwise and spanwise directions,
to obtain averaged quantities denoted by 〈·〉, first spatial averages in the x1- and
x3-directions have been performed and then because of the time-periodic nature of
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Figure 3. Temporal development of streamwise (a), cross-stream (b) and spanwise (c) velocity
components at x1 = 3.93, x2 = 0.25, x3 = 3.93 for ε = 0.005, Rδ = 500.

the the flow, the average over flow fields with a phase lag of 2π has been computed:

〈f(x2,t)〉 =
1

NP

NP∑
n=1

{
1

Lx1
Lx3

∫ Lx1

0

∫ Lx3

0

f(x1, x2, x3, t+ 2πn)dx1 dx3

}
. (9)

In (9) NP indicates the number of simulated periods.
If u′1, u

′
2 and u′3 denote the fluctuating parts of the three velocity components

(u1, u2, u3) = (〈u1〉, 〈u2〉, 〈u3〉) + (u′1, u
′
2, u
′
3), (10)

the vertically integrated kinetic energy of flow disturbances and its Fourier compo-
nents are defined by

E(x1, x3, t) =

∫ Lx2

0

1
2
(u′21 + u′22 + u′23 )dx2, (11)

E(x1, x3, t) =

Nx3∑
m=−Nx3

Nx1∑
n=−Nx1

Ênm(t)e
in2πx1
Lx1 e

im
2πx3
Lx3 , (12)
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Figure 4. |Ênm| as a function of time (ε = 0.005, Rδ = 500). —–, n = 2, m = 0; - - - -, n = 0, m = 2;
− ·− ·−·, n = 4, m = 0.

where 2Nx1
+1 and 2Nx3

+1 are the number of grid points in the x1- and x3-directions
respectively. Since E(x1, x3, t) is a real-valued quantity, it can be easily shown that

|Ênm| = |Ên−m| = |Ê−nm| = |Ê−n−m|

(the symbol | | denotes the modulus of a complex quantity). Because at present
we are interested in investigating the temporal evolution of the modulus of the
different components of kinetic energy, only the values of |Ênm| for 0 6 n 6 Nx1

and
0 6 m 6 Nx3

will be presented.
The results obtained have shown that in the disturbed laminar regime, the kinetic en-

ergy of the flow perturbations is significant only for spatial components characterized
by wavenumbers in the streamwise and spanwise directions equal to those of the wall
wavyness. Moreover, the component forced by the two-dimensional disturbance of the
wall is found to have the largest value throughout the cycle. As an example, the tem-
poral development of the significant components of |Enm| is shown in figure 4 for Rδ =

500. It can be observed that |Ê20| grows in the very last part of the decelerating phase
and in the early stages of the accelerating phase. Moreover, nonlinear effects drive
a small growth of |Ê40| too. During the initial growth of the disturbances only two-
dimensional components of the flow are triggered. On the other hand as flow acceler-
ates, a weak growth of the three-dimensional component (|Ê02|) can be seen followed
by a rapid decay of all the components at the end of the accelerating part of the cycle.

In order to get more insight into the structure of the flow field, the time development
of vorticity Ω has been considered. In figure 5 the spanwise component Ω3 is plotted
in a vertical plane parallel to the flow direction at different instants within the cycle.
To show more clearly the features of vortex structures, the part of Ω3 related to
Stokes flow and independent of x1 has been removed beforehand. The results shown
in figure 5 along with the observation that the other components of vorticity (Ω1

and Ω2) are three orders of magnitude smaller than Ω3 indicate that the growth
of the perturbations leads to the formation of two-dimensional coherent structures
characterized by an axis parallel to the spanwise direction. At the very end of
the decelerating phase (see figure 5 a) and at the beginning of the accelerating
one, clockwise and counterclockwise Ω3 vorticity originated near the wall tends to
coalesce and to form patches located in the near-wall region, which recur in the
streamwise direction at a distance equal to approximately 12 δ∗. As the external flow
accelerates, vorticity is convected in the streamwise direction originating elongated
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Figure 5. Instantaneous snapshots of the spanwise component of vorticity (Ω3) in the plane x3 = 5.9
(contour lines with ∆Ω3 = 2× 10−3) for ε = 0.005, Rδ = 500. —–, positive vorticity; - - - -, negative
vorticity. (a) t = 20.4; (b) t = 21.0; (c) t = 22.0; (d) t = 22.9.

vortex structures (see figure 5 b where the external flow is from left to right) the tip
of which moves far from the wall because of self-induced velocity. When the external
flow reaches its maximum intensity (figure 5 c), the vortex structures are folded back
and then, as the flow decelerates (figure 5 d), viscous diffusion causes a decrease of
vorticity intensity both close to the wall and far from it. In the following half period,
the process repeats similarly.

The results shown in figure 5 along with those obtained for Rδ falling in the
range (100, 550) indicate that in the disturbed laminar regime the disturbances which
appear are periodic in the streamwise direction with a wavenumber equal to that
forced by the wall waviness. Moreover, flow disturbances grow at flow reversal and
decay during the decelerating phases of the cycle. Finally, although three-dimensional
perturbations are forced by wall wavyness along with the two-dimensional ones,
they do not grow and keep quite small. Hence the results obtained suggest that the
momentary instability mechanism investigated by Blondeaux & Seminara (1979) is
effective every half a cycle and gives rise to perturbations of the Stokes solution but
it is unable to trigger turbulence. The results obtained so far have shown fluctuations
in the flow field periodic both in time and in the streamwise direction produced
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Figure 6. Temporal development of streamwise (a), cross-stream (b) and spanwise (c) velocity
components at x1 = 3.93, x2 = 0.25, x3 = 3.93 for ε = 0.005, Rδ = 1000.

by the appearance of vortices, the main axis of which is parallel to the spanwise
direction. No evidence has been found of the low-speed streaks or of the other
coherent vortex structures detected experimentally by Sarpkaya (1993) for Rδ in the
range 420–520. It is worthwhile to mentioning that Sarpkaya’s experiments were
conducted by visualizing the flow on the surface of a long cylindrical body immersed
in a sinusoidally oscillating flow. Even if the Stokes parameter, defined by Sarpkaya
(1993) as the ratio between the radius of the cross section of the cylinder and the
boundary layer thickness, was kept large in order that the mean flow be independent
of it, the present results seem to indicate that the Stokes parameter could influence the
stability of the flow. In fact structures similar to those detected by Sarpkaya (1993)
appear in the present geometry when Rδ falls in the intermittently turbulent regime,
i.e. for slightly larger Reynolds numbers.

As Reynolds number exceeds 550, a different flow regime is observed which,
following experimentalists, we will call the intermittently turbulent regime. From
figure 6 where the three velocity components at a fixed position are shown for
Rδ = 600, it can be appreciated that the velocity components show intense three-
dimensional random fluctuations. In this flow regime perturbations of the Stokes
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flow start to appear towards the end of the accelerating phases of the cycle and are
sustained during part of the decelerating phases. As Rδ is increased, the turbulent
velocity fluctuations increase in strength and the decelerating part of the cycle during
which they are observed becomes longer.

From figure 7, where the components |Ênm| defined by (12) are shown at different
instants in the cycle for Rδ = 600, it can be observed that the fluctuating part
of the flow is now strongly three-dimensional, since the number of non-vanishing
harmonics in the spanwise direction becomes even larger than the corresponding
number in the streamwise direction. The present results support Akhavan et al.’s
(1991 b) indications that the most unstable three-dimensional mode is characterized
by a wavenumber equal to 1.0 in the spanwise direction, since the amplitude of the
corresponding Fourier component (|Ê02|) shows an order of magnitude comparable
to that of the two-dimensional components and reaches its maximum intensity at the
end of the accelerating phase. However, the present results indicate that the width of
the spectrum of the unstable modes is very large even for Rδ equal to 600. Therefore,
as the Reynolds number exceeds the critical value of 550, three-dimensional effects
appear to be essential in the dynamics of the flow field. Considering the temporal
evolution of the components |Ênm|, it can be seen that disturbances start to grow
during the accelerating part of the cycle but reach their maximum intensity at the
beginning the decelerating part of the cycle. At the end of the decelerating phase,
the disturbances rapidly decay and attain low levels of energy. Again this finding
agrees with the experimental results of Akhavan et al. (1991 a) (see figure 10 of their
paper). The vorticity field shows some similarities with the ‘disturbed laminar regime’:
vorticity patches form at the beginning of the accelerating phases, are then stretched in
the streamwise direction and folded back when the external flow velocity is maximum.
Notwithstanding these similarities, both quantitative and qualitative differences are
present. In fact in the intermittently turbulent regime, Ω1 and Ω2 have the same order
of magnitude as Ω3, indicating that three dimensional effects are no longer negligible
but play a significant role. Moreover, from figure 8, which shows Ω3 in a plane parallel
to the (x1, x2)-axes for Rδ = 600, it can be seen that vortex structures are generated
at the beginning of the accelerating part of the cycle then they grow in the late
accelerating and early decelerating phases. As the external flow further decelerates,
the coherent vortices break and originate much smaller vortex structures which then
decay because of viscous effects. Inspection of figure 9, where Ω3 is plotted in a plane
parallel to the wall for the same times as figure 8 shows more clearly the generation
of elongated streaks parallel to the streamwise direction which reach their maximum
intensity for t = 82 (see figure 9 c) and then for t = 82.6 break, covering all the plane
with small-scale vortices (figure 9 d) which subsequently dissipate because of viscous
effects. Figure 10 shows that the coherent structures created during flow acceleration
rotate preferentially around an axis parallel to the x3-direction and the highest values
of Ω1 are found during the decelerating phases of the cycle when small-scale vortices
are present. Finally, in the intermittently turbulent regime the dynamics of the vortex
structures is not periodic.

When larger values of the Reynolds number are considered, flows similar to that
detected for Rδ equal to 600 are observed even though, due to stronger nonlinear
effects, the energy appears to be spread among more modes and smaller structures
appear in the temporal development of vorticity.

Further investigations have been carried out to better understand the role of the
wall in triggering and mantaining turbulence. First, both in the disturbed laminar
and in the intermittently turbulent regime the runs have been continued, after the
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Figure 8. Instantaneous snapshots of the spanwise component of vorticity (Ω3) in the plane
x3 = 3.93 (contour lines with ∆Ω3 = 0.05) for ε = 0.005, Rδ = 600; —-, positive vorticity; - - - -,
negative vorticity. (a) t = 80.7; (b) t = 81.1; (c) t = 82.0; (d) t = 82.6.

transient was completed, removing the waviness of the wall. It is found that in
the disturbed laminar regime the flow recovers a laminar behaviour in accordance
with linear stability analyses (Von Kerczek & Davis 1974; Hall 1978) and previous
numerical investigations (Spalart & Baldwin 1987; Akhavan et al. 1991 b). In the
intermittently turbulent regime, after a short transient, turbulent fluctuations persist
and the level of turbulent kinetic energy remains unaffected.

In order to investigate the effect of the amplitude of the imperfections of the wall
in triggering turbulence, two new series of runs were performed with amplitudes one
and two orders of magnitude smaller. The results are shown in figure 11 where the
time-averaged, vertically integrated specific kinetic energy E of the perturbations is
plotted versus Rδ . The value of E is defined by

E =
1

2π

∫ to+2π

to

dt

[
1

A

∫
V

1
2
(u′21 + u′22 + u′23 )dV

]
, (13)

where V indicates the volume of the computational box and A its area against the
plate. In figure 11 the three flow regimes previously defined can be clearly identified.
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Figure 9. Instantaneous snapshots of the spanwise component of vorticity (Ω3) in the plane
x2 = 0.89 (isolines with step ∆ = 0.05) for ε = 0.005, Rδ = 600; —–, positive vorticity; - - - -,
negative vorticity. (a) t = 80.7; (b) t = 81.1; (c) t = 82.0; (d) t = 82.6.

In the laminar regime (Rδ less than a value Rδ1 ranging around 100) E is practically
independent of Rδ and is proportional to ε2 in accordance with Blondeaux (1990) and
Vittori (1992). In the disturbed laminar regime (Rδ1 < Rδ < Rδ2, where Rδ2 depends
on ε) E strongly depends both on Rδ and on ε. Finally, in the intermittently turbulent
regime (Rδ > Rδ2) E is weakly dependent on Rδ and is independent of ε2. Moreover,
from figure 11 it can be appreciated that Rδ1, Rδ2 and E in the laminar and disturbed
laminar regimes are all affected by the value of ε. It is thus explained why the
appearance of disturbances is so sensitive to the characteristics of the experimental
apparatus. For example, perturbations of the Stokes flow for Rδ in the range (100,
500) have been detected by Hino et al. (1976) while Jensen et al. (1989) were unable
to observe them.

It is worth mentioning that the flow regime observed experimentally by Jensen
et al. (1989), where intense turbulent fluctuations are present throughout the whole
cycle (fully developed turbulent regime), is not reproduced in the present simulations
because the high computational costs do not allow the direct simulation of Navier–
Stokes equation for Rδ as large as 3500.
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Figure 11. Box-averaged specific turbulent kinetic energy E versus Rδ.

4. Averaged flow characteristics
In this Section the averaged characteristics of the flow field in the disturbed laminar

and intermittently turbulent regimes are presented. Comparisons with experimental
results, when possible, will be presented in order to provide further validation of the
numerical approach. The procedure employed to obtain averaged values has been
defined previously (equation (9)). When necessary to increase the statistical sample,
the parity under the transformation ϕ→ ϕ+ π is also employed. From table 1 where
the parameters of all the runs are reported, it can be appreciated that for Rδ larger
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than 400 the statistical sample ranges from a minimum of 6144 to a maximum of
53 248 items.

The averaged profiles of the streamwise velocity component at different phases
during the cycle, shown in figures 12 and 13 for Rδ equal to 400 and 1000 respec-
tively, indicate that in both the disturbed laminar (Rδ = 400) and intermittently
turbulent (Rδ = 1000) regimes, at the beginning of the accelerating part of the
cycle, the phase of velocity variations near the wall advances slightly compared with
that far from the wall. However, the phase difference in the intermittently turbu-
lent case is much smaller than in the disturbed laminar flow which exhibits velocity
profiles very similar to those of the Stokes solution. In figure 13 the experimen-
tal results by Akhavan et al. (1991 a) for Rδ = 1080 are also shown. It can be
immediately appreciated that a qualitative agreement between numerical and ex-
perimental results is found on the temporal development of velocity profiles, while
quantitative discrepancies are present. Such discrepancies can be partly ascribed to
the different value of the Reynolds number and partly to the fact that the exper-
iments by Akhavan et al. (1991 a) were conducted in a different geometry which
consisted of a circular pipe of radius 10.6δ∗. Indeed, it is evident from the veloc-
ity profiles obtained numerically and shown in figure 13 that in the decelerating
phases of the flow the boundary layer thickness attains quite large values with re-
spect to the radius of the duct. For this reason, far from the wall, Akhavan et al.
(1991 b) found values of the ratio between the actual velocity and U∗o larger than
one.

Comparing figures 12 and 13, it is clearly apparent that the thickness of the
boundary layer increases in the intermittently turbulent regime and slightly lower
velocity values are found near the wall. This tendency towards uniformity of the
velocity distributions in the intermittently turbulent regime is caused by the violent
turbulent mixing, transferring momentum of high-speed fluid towards the wall and
momentum of low-speed fluid far from the wall. Such a tendency is confirmed by
the phase dependence of the streamwise component of velocity at different heights
from the wall shown in figure 14 for a value of the Reynolds number close to that
investigated by Hino et al. (1983) together with their measurements. In accordance
with the experimental results, it can be observed that the velocity variations near
the wall are rather flat for long periods and then are characterized by a rapid
change. Moreover , in accordance with Hino et al.’s (1983) observations, the present
simulations also show small humps towards the end of the decelerating phases in
the near-wall region, which are more pronounced in the vicinity of the wall. These
humps are produced by the strong increase of turbulence activity which takes place
during the decelerating phases in the near-wall region, as can be seen from figure
15 where turbulence intensities are plotted at different phases in the cycle. In figure
15 the experimental measurements of 〈u′1u′1〉 and 〈u′2u′2〉 by Akhavan et al. (1991 a)
are also shown. It can be immediately appreciated that while the temporal evolution
of turbulent intensities is qualitatively well predicted, quantitative differences are
found. As previously discussed, such discrepancies can be ascribed partly to the
difference in Reynolds number and partly to the influence of the different geometry
of Akhavan et al.’s (1991 a) experiments. It is worth pointing out that turbulent
intensities measured by Akhavan et al. (1991) do not vanish at the axis of the
pipe, thus showing that δ∗ cannot be considered much smaller than the radius
of the duct. The temporal development of the turbulent intensities shows that the
term 〈u′1u′1〉1/2 turns out to be always larger than 〈u′2u′2〉1/2 and 〈u′3u′3〉1/2 and it is
characterized by a different dynamics. Indeed 〈u′1u′1〉1/2 reaches its maximum intensity
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at the end the accelerating phase while 〈u′2u′2〉1/2 and 〈u′3u′3〉1/2 attain the largest values
during the decelerating phase when turbulent fluctuations are observed to be more
intense.

In order to get a deeper insight in the temporal development of turbulence, it is
worth considering the equation for the turbulent kinetic energy (Hinze 1959) which
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in non-dimensional form reads
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, (14)

where the turbulent kinetic energy in non dimensional form turns out to be

e = 1
2
〈u′iu′i〉.

Differently from the Blasius boundary layer case where all terms appearing in equation
(14) show the same order of magnitude, in the present case term I vanishes and term
II remains negligible throughout the whole cycle. In figure 16 the vertical distribution
of the largest terms appearing in (14) are shown at different phases in the cycle. It can
be observed that term V (figure 16 a), describing the production of turbulent kinetic
energy, grows during the accelerating phases and at the beginning of the decelerating
phases and attains maximum values near the wall at a distance of approximately 0.5δ∗

at a phase ϕ slightly larger than π. Similarly term VI, which will be referred to as the
dissipation term, grows during the accelerating and the first part of the decelerating
phases and its reaches maximum value for ϕ ≈ 23/20π at a distance of approximately
0.2δ∗ from the wall (figure 16 b). The term describing turbulent convection of kinetic
energy (term III) attains its maximum amplitude at the end of the accelerating part of
the cycle at the wall, shows a second maximum for a value of x2 equal to about 0.5δ∗
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and slowly vanishes in the cross-stream direction (figure 16 c). Finally, the influence
of the diffusive term (IV) is mainly restricted to the near-wall region and its growth
is limited to the early stages of decelerating phases.

From the temporal development of the terms of equation (14) integrated in the
vertical direction (see figure 17) it can be immediately appreciated that the terms de-
scribing turbulent convection and diffusion of turbulent kinetic energy are significantly
smaller than the production and dissipation terms. Moreover, it can be noticed that an
order of magnitude balance is attained at each instant between the vertically averaged
values of production and dissipation terms. However, inspection of figures 16 (a) and
16 (b) shows that such a balance is not attained locally. The overall picture emerging
from the analysis of the temporal and spatial development of the terms of equation
(14) is thus the following. The accelerating phase of the flow is characterized by a rapid
production of turbulent kinetic energy which takes place in a wall region of order 2δ∗.
Turbulence in this phase is not in equilibrium since the production term is significantly
larger than the dissipation. Hence turbulent energy grows; moreover, it diffuses be-
cause of term IV. At later times, because of diffusion the maximum of turbulent kinetic
energy moves far from the wall and tends to decrease while e spreads. In the early part
of the decelerating phase the production remains approximately constant while dissi-
pation grows in the region near the wall. In this part of the cycle turbulence appears
to be in a situation of quasi-equilibrium. Finally, in the last part of the decelerating
phase all the quantities are found to decay and both production and dissipation cover
a larger spatial region. The present results are indirectly supported by experimental
observations (Hino et al. 1973; Akhavan et al. 1991 a) which show high turbulence
fluctuations during the first part of decelerating phases. Moreover, in this phase, due
to the effect of term II and of turbulent convection, turbulence tends to become more
isotropic and the velocity fluctuations become progressively three-dimensional. This
trend is also supported by the output of the ‘numerical probe’ shown in figure 6.

The results described above show that the dynamics of turbulence is highly time-
dependent and quasi-equilibrium conditions are reached only during a restricted part
of the decelerating phase.

The high unsteadiness of the flow and of turbulence structure affects both the aver-
age velocity and the shear stresses shown in figure 18 together with the experimental
results by Akhavan et al. (1991 a). It can be appreciated that the viscous component
appears to be significant only in a layer of order δ∗ adjacent to the wall. On the other
hand the turbulent contribution is found to grow towards the end of the accelerating
part of the cycle and to reach its maximum intensity during the decelerating part at
a distance from the wall of approximately 2δ∗ even though it remains significant in a
near-wall region of thickness about 15δ∗. From figure 18, it can be seen that also the
temporal development of turbulent shear stress is in agreement with experimental re-
sults. Good agreement with existing experimental results is also attained regarding the
temporal development of horizontally averaged wall shear stress shown in figure 19 for
Rδ = 1000. The wall shear stress turns out to be maximum at the end of the acceler-
ating and early decelerating phases and is practically in phase with the outer velocity.

5. Conclusions
On the basis of direct simulations of an oscillatory flow close to a flat but imperfect

wall, it has been possible to delineate the mechanism of transition from the laminar
to the intermittently turbulent regime through the disturbed laminar regime in a
Stokes boundary layer. In the disturbed laminar regime it has been shown that the
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disturbances observed in experiments are induced by imperfections of the experimental
apparatus which in turn excite the modes known to be momentarily unstable on the
basis of the momentary stability analysis of Blondeaux & Seminara (1979). The flow
field in the disturbed laminar regime turns out to be highly two-dimensional and
periodic. As Rδ exceeds 550 three-dimensional components appear in accordance
with the results by Akhavan et al. (1991 b) and the ‘intermittently turbulent regime’
is observed.

Moreover, the numerical simulations have shown that the value of the time-
averaged vertically integrated specific kinetic energy of the disturbances depends
both on the Reynolds number and on the amplitude of wall imperfections in the
’disturbed laminar’ regime, while in the ‘intermittently turbulent’ regime E is found to
be independent of ε and to depend only weakly on Rδ . The runs for Reynolds numbers
in the intermittently turbulent regime have allowed the characteristics of turbulence
to be investigated. In particular the analysis of the temporal development of the
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Figure 19. Temporal development of the horizontally averaged wall shear stress (τo) at Rδ = 1000
( —– ) and temporal development of streamwise velocity component far from the wall ( . . . . . . ).

different terms of the turbulent kinetic energy equation has shown that equilibrium
conditions are never strictly attained. Indeed while the accelerating part of the cycle
is characterized by turbulence production, dissipation starts to be effective during the
decelerating phase. Therefore, ‘quasi-equilibrium’ conditions are observed only during
a small part of the decelerating phase.
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